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Abstract: 16 
 17 
Previous research found that Global Climate Models (GCMs) usually simulate 18 
greater lower tropospheric stabilities compared to reanalysis data. In order 19 
to understand the origins of this bias, we examine hindcast simulations 20 
initialized with re-analysis data of 6 GCMs and find that 4 of the 6 models 21 
simulate within 5 days a positive bias in Arctic lower tropospheric stability 22 
during the Arctic polar night over sea ice and land regions. These biases in 23 
lower tropospheric stability are mainly due to cold biases in surface 24 
temperature, as very small potential temperature biases exist aloft.  25 
 26 
In the hindcast runs, inter-model differences in downward longwave 27 
radiation at the surface explain a significant fraction of inter-model 28 
differences in polar night surface temperatures. Both clear sky and cloud 29 
radiative effects contribute to these longwave radiation differences. An 30 
important cloud property is the frequency of a cloud with liquid water path 31 
greater than 20 g m-2. Inter-model spread in this quantity has a statistically 32 
significantly positive correlation to the inter-model spread of surface 33 
temperatures and longwave radiation. 34 
  35 
These models were also analyzed in AMIP mode to determine if hindcast 36 
simulations are analogy to free-running simulations. Similar winter lower 37 
tropospheric stability biases occur in 4 of the 6 models with surface 38 
temperature biases relating to the winter lower tropospheric stability values.   39 
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1. Introduction 40 

Temperature inversions in the lower troposphere are a common feature of 41 

the Arctic climate (Serreze et al. 1992; Liu et al. 2006; Zhang et al. 2011), and these 42 

surface based inversions are more frequent and more stable during the winter 43 

months compared to summer months (Tjernstrom; Graversen 2009; Zhang et al. 44 

2011). Regional and Global Climate Models (GCMs) have difficulties representing 45 

Arctic inversions (Dethloff et al. 2001; Tjernstrom et al. 2008; Boe et al. 2009; Kay et 46 

al. 2011; Medeiros et al. 2011; Pithan et al. 2013). Boé et al. (2009) found that many 47 

of the models in the third Coupled Model Intercomparison Project (CMIP3) have an 48 

overly stable lower troposphere when compared to reanalysis data. In further 49 

evaluating the Lower Tropospheric Stability (LTS) in the CMIP3 models, Medeiros et 50 

al. (2011) determined that the Arctic LTS of 21 GCMs and reanalysis data are 51 

bimodal. There was a stable mode over the Arctic Ocean and adjacent continents, 52 

and an unstable mode over the North Atlantic Ocean. Medeiros et al. (2011) found 53 

that about half the climate models examined had an Arctic averaged overly stable 54 

LTS because of the bias in the partitioning of the two modes and the other half had 55 

an Arctic averaged overly stable LTS because of the bias in LTS in the stable mode. 56 

Pithan et al. (2013) examined CMIP5 (Taylor et al. 2012) models and found an 57 

overly stable lower troposphere occurred in many of these updated GCMs. 58 

Representing the Arctic LTS in climate models is important because the mean 59 

LTS may be related to the amount of Arctic climate change in an enhanced CO2 60 

world (Boe et al. 2009; Bintanja et al. 2011; Bintanja et al. 2012). Boé et al. (2009) 61 

found a linear relationship between Global Climate Models’ (GCMs’) mean Arctic LTS 62 

and the Arctic longwave (LW) feedback in the CMIP3 archive, and suggested that 63 

GCMs have an unrealistic Arctic negative LW feedback because GCMs have a too 64 

stable Arctic lower troposphere.  Bintanja et al. (2011) examined how the mean LTS 65 

state affects Arctic climate change in an enhanced CO2 world in the GCM EC-Earth by 66 

altering the stable boundary layer mixing parameterization. As expected, lower 67 

mixing values resulted in a more stable mean Arctic LTS, while more mixing 68 

resulted in a less stable Arctic LTS in the GCM. When increasing CO2 in EC-EARTH 69 

with these different values of boundary layer mixing, the run with a more stable LTS 70 
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in the mean state had a greater amount of Arctic surface warming and a greater 71 

amount of sea ice loss. Bintanja et al. (2011) theorized that the model with a more 72 

stable LTS allowed less Arctic low-level heat to be released into the free 73 

troposphere, and hence greater surface temperature change at the surface. 74 

These studies motive further study into the biases of GCMs in representing 75 

Arctic LTS and their origins. In particular, this paper explores three questions: 76 

Do GCMs have biases in Arctic LTS during all months/seasons? Boé et al. 77 

(2009) and Medeiros et al. (2011) found that Arctic LTS in GCMs is too stable during 78 

the winter months compared to reanalysis data, and yet Kay et al. (2011)  found a 79 

similar biases in Arctic LTS in July examining National Center for Atmospheric 80 

Research’s (NCAR’s) Community Atmospheric Model version 4 (CAM4).   81 

What atmospheric level or levels may be causing an Arctic bias in LTS? LTS is 82 

defined as the temperature or potential temperature difference between a level 83 

above the inversion and the surface. The GCM bias may be due a temperature bias 84 

above the inversion, at the surface, or of a combination of biases at both levels. 85 

Chapman and Walsh (2007) and Svensson and Karlsson (2011) found that many 86 

models in the CMIP3 archive underrepresent the amount of downwelling LW 87 

radiation during the winter months, and hence a surface temperature bias exists. 88 

Are the Arctic LTS biases solely due to surface temperature biases or do biases in 89 

the temperature above the inversion contribute? 90 

What are possible causes of the Arctic LTS bias? As mentioned in Bintanja et al. 91 

(2011), the stability is controlled by the boundary layer mixing in GCMs, and one 92 

hypothesis in why Arctic LTS is bias in GCMs is that the boundary layer mixing is 93 

incorrect. With traditional representations of the mixing in the stable boundary 94 

layer, mixing tends to shut off as stability increases which may cause the surface to 95 

decouple from the troposphere leading to runaway cooling of the surface 96 

(Derbyshire 1999; Steeneveld et al. 2006) and overly stable conditions may occur. 97 

Often times models may arbitrarily increase the amount of stable mixing to avoid 98 

surface temperature biases under stable conditions (Sandu et al. 2013), but such 99 

tunings may not be present in all models. An alternate but not exclusive explanation 100 

of why Arctic LTS is incorrect in GCMs, which we investigate in this paper, is that 101 
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there is a misrepresentation in the radiative driving of the surface temperature, 102 

particularly a misrepresentation of surface downwelling radiation, which may be 103 

impacted by clouds.  104 

Previous case studies have demonstrated that clouds greatly regulate surface 105 

temperature in the Arctic (Shupe; Intrieri 2004), and models routinely have a 106 

difficult time representing Arctic clouds correctly (Tjernstrom et al. 2008; Klein et 107 

al. 2009; Morrison et al. 2009; Pithan et al. 2013).  The increase in downward 108 

longwave radiation that occurs with clouds may be enhanced by increased longwave 109 

emission from water vapor which tends to be higher when clouds occur (Francis et 110 

al. 2005). If errors in clouds contribute to significant errors in the downward 111 

longwave radiation, then we need to determine which characteristics of clouds are 112 

most responsible. In fact, Pithan et al. (2013) suggested that a miss-representation 113 

of mixed-phase clouds during the Arctic winter relates to errors in the CMIP5 114 

models’ LTS. 115 

 In this study, we use GCM hindcast runs (Phillips et al. 2004) to analyze 116 

Arctic LTS in a subset of CMIP5 models. Because hindcasts are initialized with 117 

operational weather analyses, the analysis of hindcast runs allows for a 118 

determination of initial error in climate models. Multiple feedbacks may lead a GCM 119 

bias to worsen, but these feedbacks may also lead to compensating errors in which 120 

biases are reduced; either way hindcast runs aid in isolating the factors contributing 121 

to GCM biases. In addition, hindcast runs allows for a comparison with observations 122 

at specific time steps and locations, something that is not as easily done with the 123 

typical GCM diagnosis, which relies on comparisons of the statistics from decades of 124 

model output with observations or re-analysis. Furthermore, we analyze high 125 

frequency output from the hindcast simulations, which allows for a more process 126 

driven approach in determining biases. This is particularly helpful in this study 127 

since the Arctic surface is dominated by a bimodal distribution of net surface LW 128 

radiation apparent in hourly data (Stramler et al. 2011; Morrison et al. 2012). This 129 

bimodal distribution is masked by monthly averages, but may be important for 130 

simulating the Arctic climate. 131 
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In this paper, we first describe the hindcast modeling runs (Section 2.1). We 132 

also examine the same GCMs in a free running mode to relate to the hindcast 133 

modeling runs, and a description of these models is found in Section 2.2. Next, a 134 

description of operational analysis, reanalysis and in-situ data is presented 135 

(Section3), and we discuss methods and variables definitions (Section 4). We first 136 

present results of the hindcasts runs for areas poleward of 70°N (Section 5.1) and at 137 

Barrow, Alaska (Section 5.2). Then we present the results of free-running climate 138 

integrations of the same models (Section 5.3). Last, we discuss and reiterate the 139 

main conclusions of this paper (Section 6). 140 

2. Model Runs 141 

2.1. Hindcast Runs 142 

Hindcast runs from the Transpose AMIP II (T-AMIP) experiment and internal 143 

runs at Lawrence Livermore National Laboratory (LLNL) are used in this paper. 144 

Transpose AMIP is a model intercomparison experiment for GCMs run in hindcast 145 

mode (Williams et al. 2013) with a goal to understand how biases grow in climate 146 

models from a well-initialized state. The hindcast method generally emphasizes 147 

model errors in the moist processes because the analyses used to initialize models 148 

constrain the large-scale dynamics to be close to observed analysis (Phillips et al. 149 

2004; Xie et al. 2012). 150 

The models we use in the Transpose AMIP experiment include: HadGEM2-A, 151 

IPSL-CM5A-LR, CNRM-CM5, and MIROC5 (Table 1). For each season, 16 hindcast 152 

runs were performed.  The seasons started on the 15th of October 2008, January 153 

2009, April 2009, and July 2009 at 00Z. The 16 hindcast runs for each season were 154 

started 30 hours apart from each other, produced 5-day forecasts, and 3 hourly 155 

output were archived. These runs were initialized by the European Center for 156 

Medium Range Forecasting Year of Tropical Convection (ECMWF-Y) analysis data. 157 

The model output from Transpose AMIP is available on the Earth System Grid 158 

federation (ESGf). More detailed information on the T-AMIP runs is presented in 159 

Williams et al. (2013). 160 

In addition, the Community Atmospheric Model version 4 and 5 (CAM4 and 161 

CAM5) from NCAR were run at LLNL in hindcast mode. These runs were initialized 162 
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at 00Z every day from May 2008 to March 2010 and produced 5 day forecasts. 163 

These are the same runs used in Barton et al. (2012), Xie et al. (2012), and Ma et al. 164 

(2013). The initialization data for CAM4 and CAM5 are the same as the Transpose 165 

AMIP initialization data (i.e., the ECMWF-Y analysis). To be consistent in the data 166 

analysis, CAM4 and CAM5 runs are only analyzed during the seasons laid out by the 167 

Transpose AMIP runs. There are more data points in the CAM4 and CAM5 output 168 

because these models were initialized everyday instead of once every 30 hours. 169 

Official T-AMIP CAM4 model runs will be released on the ESGf in the future, but 170 

these runs were not available at the time of this study. 171 

2.2. AMIP Runs 172 

To compare with the hindcast results, we analyze free running or 173 

Atmospheric Model Intercomparison Project (AMIP) runs for the models listed in 174 

Table 1. AMIP runs have monthly-observed sea surface temperatures and sea ice 175 

concentrations as boundary conditions. We analyze daily output from the AMIP runs 176 

in which atmospheric composition emulates the 20th century (i.e., 20th century 177 

historical AMIP runs), and the output from these runs is available at ESGf under the 178 

CMIP5 (Taylor et al. 2012) archive.  179 

3. Operational Analysis, Reanalysis, and In-Situ Data 180 

To evaluate the hindcasts at a large-scale, we compare models to the ECMWF 181 

operational analyses for the Year of Tropical Convection (Waliser et al. 2012) 182 

(ECMWF-Y). These are the same data used to initialize the hindcast runs. Hindcast 183 

modeling runs were also examined against in-situ observations. We use the Climate 184 

Modeling Best Estimate (CMBE) data (Xie et al. 2010) at Barrow (e.g., the North 185 

Slope of Alaska (NSA)) for this analysis. The data from Barrow were collected from a 186 

long-term measurement site of the US Department of Energy's Atmospheric 187 

Radiation Measurement (ARM) program. Lastly, to evaluate the AMIP simulations at 188 

larger temporal averages than the ~2 years of ECMWF-Y, we use the ECMWF 189 

ReAnalysis Interim (ERA-I) output (Dee et al. 2011). 190 

Because we evaluate the GCMs against the ECMWF-Y analysis, the question 191 

arises on how well the ECMWF-Y analysis represents the components of LTS. Table 192 

2 displays the bias, Mean Absolute Bias (MAE), and Root Mean Square Error (RMSE) 193 
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between ECMWF-Y and the NSA LTS (Eq. 1), surface temperature, and potential 194 

temperature at 850 hPa.  The CMBE observations use the available radiosonde data 195 

collected by the ARM program at its NSA site. This comparison was performed using 196 

hourly mean data every 3 hours during periods of T-AMIP runs and at the ECMWF-Y 197 

grid point which is closest to the NSA.  The results are presented for all, polar night, 198 

and polar day periods (defined in Section 4.1).   199 

The absolute bias for all measures is 1 K or less, with the largest bias at -1 K 200 

for LTS during the polar day. The largest MAE and RMSE occur for LTS during the 201 

polar night periods with values of 2.63 K (MAE) and 3.55 K (RMSE). The LTS error is 202 

a combination of errors at the surface and the potential temperature at 850 hPa. 203 

MAE and RMSE errors are always larger at the surface compared to errors at 850 204 

hPa. Statistically, the ECMWF-Y compares remarkably well to the NSA data though a 205 

more thorough comparison of the ECMWF-Y analysis with different in-situ at 206 

different locations would be beneficial. Of course, small errors in the ECMWF-Y may 207 

arise because data from the operational weather sounding at NSA are used by the 208 

ECMWF data assimilation package. With these known caveats, we still feel that it is 209 

beneficial to analyze the hindcast simulations with ECMWF-Y operational analysis 210 

over the Arctic domain.  211 

4. Methods 212 

4.1. Temporal Period of Analysis  213 

Because the controls on Arctic temperature structure differ depending on 214 

whether or not solar energy is available, we choose to analyze the hindcast runs not 215 

based on the season as defined by the T-AMIP runs, but based on if the sun was 216 

above or below the horizon. For each time step, data averaged poleward of 70°N of 217 

the hindcast simulation is labeled either as Polar Night or Polar Day based upon an 218 

average Solar Zenith Angle (SZA) calculated for all modeled longitudes at a latitude 219 

of 80°N. For the comparison with the CMBE-NSA data, the SZA, hence Polar Night 220 

and Polar Day, is calculated at each time step using the latitude and longitude at 221 

Barrow. The AMIP runs are analyzed during the same temporal periods that overlap 222 

with the ERA-I product (January 1979 to December 2008), and Polar Night/Day is 223 
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defined the same way as the T-AMIP runs, but using daily output instead of 3 hourly 224 

output.   225 

4.2. Lower Tropospheric Stability (LTS) 226 

LTS is defined as the temperature or potential temperature difference at a 227 

height above the boundary layer (x) and at a layer near the surface (y) (i.e., 228 

𝐿𝑇𝑆 = 𝜃𝑥 − 𝜃𝑦). The surface is usually defined at 1,000 hPa for the lower latitude 229 

oceans (Klein; Hartmann 1993).  In the Arctic, the surface temperature is a more 230 

ideal indicator of LTS than 1,000 hPa because the surface temperature can be lower 231 

than the temperature at 1,000 hPa. In this study, we define the surface as the 2-232 

meter air temperature, which is a standard output for GCMs, operational analysis, 233 

reanalysis products, and in-situ observations. We have verified that the main 234 

conclusions would not change if surface skin temperature was used in place of 2-235 

meter air temperature. 236 

In the mid-latitudes, the height above the boundary layer used for LTS 237 

calculations is usually 700 hPa (Klein; Hartmann 1993). In the Arctic, the boundary 238 

layer is not as deep as in the mid-latitudes and multiple heights have been used to 239 

estimate LTS: e.g., 700 hPa (Barton et al. 2012), 850 hPa (Boe et al. 2009; Medeiros 240 

et al. 2011), and 925 hPa (Kay; Gettelman 2009; Kay et al. 2011; Pavelsky et al. 241 

2011).  Vertical temperature profiles of the Transpose-AMIP runs and ECMWF-Y 242 

analysis (not shown) show that the average height of the inversion is below 850 hPa 243 

and 925 hPa; consequently, we define LTS as Eq. 1.  244 

 𝐿𝑇𝑆 ≡  𝜃850 − 𝜃2𝑚 1 

4.3. Longwave Cloud Radiative Effect 245 

In order to study the impact of clouds on the surface radiation budget during 246 

the polar night and its relationship to LTS, we examine the models’ longwave Cloud 247 

Radiative Effect (CRELW). The Cloud Radiative Effect (CRE), or cloud radiative 248 

forcing, is a measure of the clouds effect on the environment (Ramanathan et al. 249 

1989). In this study we analyze the CRELW at the surface, defined as Eq. 2, 250 

 CRELW ≡ LW↓(A) - LW↓(0) 2 
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, where LW↓(A) is the surface downwelling longwave radiation for all sky 251 

conditions, and LW↓(0) is the surface downwelling longwave radiation assuming 252 

clear sky conditions.  253 

While LW↓(A) and LW↓(0) are both readily available from standard model 254 

output, LW↓(0) is not available from the observations. Thus, we calculate it using 255 

the Rapid Radiative Transfer Model for GCMs (RRTMG) (Mlawer et al. 1997) for 256 

periods that temperature and moisture profiles were available from the 257 

radiosondes, which were launched every 12 hours at Barrow. In these RRTMG 258 

calculations, cloud and aerosol properties were set to zero, ozone concentrations 259 

were taken from the monthly ERA-I product, and CO2 concentrations were taken 260 

from NCAR’s Community Earth System Model CESM historical runs.  261 

Defining CRELW with only downward (instead of net) fluxes follows previous 262 

research (Barton; Veron 2013; Shupe; Intrieri 2004), and is a measure of the 263 

instantaneous effect of clouds on the surface energy budget. CRELW values are 264 

generally positive because the LW↓ is greater with a cloud than without, and this 265 

represents a warming effect of clouds. During the polar night, we emphasize that 266 

CRELW is the total cloud radiative effect because of the lack of insolation.  267 

4.4. Cloud Properties 268 

If CRELW significantly relates to Arctic LTS biases, it is important to 269 

understand which cloud properties contribute to the relationship. Cloud properties 270 

that affect averaged CRELW include cloud cover amount (both frequency and amount 271 

when present), and cloud Liquid Water Path (LWP) and cloud Ice Water Path (IWP). 272 

Due to the lack of available model data, the effects of cloud particle size on longwave 273 

radiation (Garrett; Zhao 2006) are not considered in the present study. In the Arctic, 274 

the bimodal temporal distribution of hourly surface LW radiation relates to 275 

differences in humidity, and may relate to differences in clouds (Morrison et al. 276 

2012; Stramler et al. 2011). The temporal distribution (i.e., frequency) of cloud 277 

properties are quantified for a comparison with surface temperature. 278 

In addition, we compute the fraction of grid-boxes that LWP and IWP in the 279 

3-hourly (or daily) output exceed specified thresholds, to roughly represent the 280 

fraction of time that the atmosphere contains an opaque cloud. The LWP and IWP 281 
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thresholds are determined by the LWP and IWP amount that affects surface LW↓, 282 

though we acknowledge that other cloud properties, such as vertical placement and 283 

temperature, also affect surface LW↓. Arctic clouds saturate in the longwave with 284 

LWPs near 30 g m-2 (Shupe; Intrieri 2004; Chen et al. 2006).  An increase in 285 

downwelling longwave radiation at the surface is not expected when a cloud LWP 286 

increases beyond the LWP saturation value when the temperature and moisture 287 

conditions are the same. Even though clouds saturate in the LW with LWPs near 30 288 

g m-2, we choose a threshold of 20 g m-2 in this paper. This threshold is chosen 289 

because clouds with LWPs at 20 g m-2 (i.e. non-opaque clouds with still appreciable 290 

cloud emissivity) affect the surface downwelling longwave radiation, and hence 291 

surface temperature. Clouds with lower LWPs also affect the surface radiative 292 

budget, but the uncertainty of the LWP measurements is near 25 g m-2 (Westwater 293 

et al. 2001). We feel that the uncertainty of the measurement compared to the signal 294 

is too large if we defined an opaque liquid cloud with a lower threshold than 20 g m-295 
2, but our main results are not altered if the LWP threshold ranges from 10 to 30 g 296 

m-2. 297 

The IWP threshold for opaqueness is suggested by Ebert and Curry (1992). 298 

They modeled cloud emissivity as a function of cloud IWP and ice effective radius, 299 

and through their analysis, we choose an IWP threshold for 25 g m-2 of cloud 300 

opaqueness caused by ice. In Ebert and Curry (1992), clouds with IWPs at 25 g m-2 301 

had emissivities ranging from 0.5 to >0.9 with effective radii ranging from 20 to 90 302 

µm. The T-AMIP model output does not have ice cloud effective radii data to 303 

compare with the modeling results of Ebert and Curry (1992), but changing the IWP 304 

threshold to 40 g m-2 does not change the results of this paper. In addition, CMBE-305 

NSA data do not have IWP observations so measurement uncertainty is not 306 

discussed. In addition, to separately computing the frequency that LWP and IWP 307 

individually exceed a threshold, we also analyze the frequency that either the LWPs 308 

are above 20 g m-2 or IWPs are greater than 25 g m-2 to determine a full opaqueness 309 

of the atmosphere due to clouds. In passing, we note we are using the 3-hourly grid-310 

box mean LWP or IWP instead of computing whether an in-cloud value of LWP or 311 

IWP exceeds the threshold and then multiplying by the cloud fraction for the 3 312 
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hourly period. The difference in frequency of opaque cloud calculated with this 313 

alternate approach is likely very small. 314 

5. Results 315 

5.1. Hindcast Biases Poleward of 70°N 316 

5.1.1. Biases in LTS, Potential Temperature at 850hPa, and Near Surface 317 

Temperature 318 

For each 3-hour temporal period, variables were averaged poleward of 70°N, 319 

and then averaged for polar night and polar day periods. Averaged polar night and 320 

polar day biases of LTS, potential temperature at 850 hPa, and surface temperature 321 

are shown in Figure 1.  Biases are more prominent during the polar night compared 322 

to the polar day for all models except CNRM-CM5, which has small biases in both the 323 

polar night and polar day. During the polar night, CAM4, CAM5, HadGEM2-A, and 324 

IPSL-CM5A-LR all have a more stable Arctic lower troposphere compared to the 325 

ECMWF-Y analysis, in agreement with the previous findings that climate models 326 

tend to have overly stable conditions in Polar regions. In contrast, the MIROC5 327 

model exhibits very different behavior by drifting towards a less stable lower 328 

troposphere and has on forecast day 5 a LTS bias of -2.7 K during the polar day and -329 

6.2 K during the polar night. In most models, the bias nearly saturates by the 330 

hindcast day two and the biases are not much larger in during days three to five. 331 

Two exceptions are CAM5 and MIROC5, in which biases continue to grow with 332 

forecast day. Relatively small biases in the day one hindcast in CAM4, CAM5, 333 

HadGEM2-A, CNRM-CM5 suggest that the initialization is successful setting LTS to 334 

the analysis value.  335 

The biases 𝜃850 are very small compared to the biases in the LTS during the 336 

polar day and polar night periods, and the biases in surface temperature are of a 337 

similar magnitude as the LTS biases for all models in both the polar day and polar 338 

night. The relative smallness in the hindcasts of biases in 𝜃850 is perhaps not 339 

surprising given that the processes governing its evolution evolve on a longer time 340 

and space scales than those associated with surface temperature. Indeed, analysis of 341 

the AMIP integrations shows that at climate timescales biases in 𝜃850 can contribute 342 

to biases in LTS in some seasons in some models (see Figure 10 below). During the 343 
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polar night, CAM4, CAM5, HadGEM2-A, and IPSL-CM5A-CM5-LR all have surface 344 

temperatures lower than the ECMWF-Y analysis, which relates to the LTS value to 345 

be larger than ECMWF-Y. MIROC5 has a warmer surface temperature than the 346 

ECMWF-Y analysis, and the LTS values are lower than the ECMWF-Y analysis. All 347 

models have larger biases during the polar night compared to the polar day, and 348 

MIROC5 has the largest biases compared to the other models during the polar day.  349 

Medeiros et al. (2011) stated that Arctic LTS is a bimodal distribution with 350 

higher LTS values occurring over the Arctic sea ice and land, and lower LTS values 351 

occurring over the Arctic open ocean. In addition, Pavelsky et al. (2011) found that 352 

mean annual sea ice concentrations correlate very well with December, January, 353 

February mean Arctic LTS (r = 0.88). Because the mean Arctic LTS state is 354 

dependent on sea ice, are the biases also dependent on surface type? In Figure 2, the 355 

Arctic LTS, potential temperature at 850 hPa, and near surface temperature biases 356 

are displayed averaged over regions of sea ice, land, and open water for regions 357 

poleward of 70°N during the polar night period. The polar night period is only 358 

shown because of the relatively large biases compared to the polar day. The largest 359 

biases occurred over sea ice covered regions compared to regions of land and open 360 

water. The relatively small biases over open water are expected because these 361 

models are forced with observed SSTs. 362 

Even though the LTS biases over sea ice are larger than over land, these 363 

biases are generally of the same sign in a given model.  This suggests that the biases 364 

are not caused by processes in the sea ice or land. The IPSL-CM5A--LR model is an 365 

exception in which over sea ice, the LTS drift is toward a more stable lower 366 

troposphere and there is little LTS bias over land. As displayed in Figure 1, the LTS 367 

biases over sea ice is very much related to the near surface temperature bias. 368 

Hereafter we focus on polar night over sea ice when examining the hindcast 369 

modeling runs because of the relative larger biases. 370 

5.1.2. Model Spread in Near Surface Temperatures 371 

5.1.2.1. Comparison with LW Radiation 372 

Polar night biases in LTS very much relate to biases in the near surface 373 

temperature. The correlation coefficient between these area-averaged variables for 374 
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each model and hindcast day is -0.993.  Because of the connection between Arctic 375 

LTS and surface temperature bias and the relatively small biases at 850 hPa, we 376 

focus on understanding the spread in surface temperatures across the models and 377 

hindcast days.  378 

The spread in surface temperature is very much related to the spread in 379 

surface downwelling longwave radiation (LW↓) during the polar night (Figure 3).  380 

Without solar radiation and relatively inefficient other sources of energy, this 381 

reflects the dominance of longwave radiation on the surface energy balance over sea 382 

ice in the polar night. It suggests that the surface temperature in these hindcast runs 383 

is coming into radiation balance with the longwave radiation incident upon it from 384 

the atmosphere. Indeed, the slope of the line is 3.8 W m-2 K-1 which is approximately 385 

equal to slope of the dependence of upward LW emission using the typical surface 386 

temperatures from the hindcast models (i.e.,  
𝜕 𝜎𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒

4

𝜕 𝑇
= 4𝜎𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒3 , where σ is the 387 

Stefan Boltzmann constant and Tsurface is the surface temperature). 388 

Is the inter-model spread in LW↓ associated with spread in clear-sky or 389 

cloudy-sky conditions? Figure 3, which examines the intermodel spread in clear sky 390 

and CRELW, shows that there are statistically significant (defined by p-values less 391 

than 0.05) relationships of these two variables with near surface temperature. 392 

Models with higher surface temperatures, tend to have larger clear sky LW↓ and 393 

their clouds are more radiatively opaque. The spread in LW↓ in the models is ~45 W 394 

m-2 and the spread in clear sky LW↓ and CRELW is ~25 W m-2.  An interesting 395 

observation of the CRELW scatter plot is that for each model, except IPSL-CM5A-LR, 396 

the day 1 CRELW forecast is more different from forecast in the other days, compared 397 

the differences in the day 2, day 3, day 4, and day 5 forecast with themselves. This 398 

suggests that the cloud characteristics for each model have not completely spun up 399 

in the day 1 forecast.   400 

Because these models were initialized with the same temperature and 401 

moisture profiles one would expect the spread in clear-sky LW↓ to be relatively 402 

small, at least initially. Thus, the relatively large spread in clear sky LW↓ is worth 403 

further investigation, and we examine the hour 3 to 21 hindcast output. The hour 3 404 
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spread in clear sky LW↓ is 11 W m-2, which is only about 4 W m-2 less than the 405 

average day 1 spread, and 40-50% of the inter-model spread at day 3.  Why is there 406 

an 11 W m-2 difference in clear sky LW↓ at the first time that output was archived? 407 

This spread may be due to differences in temperature and humidity that develop 408 

during the first 3 hours of the hindcast, radiation code, and/or other factors that 409 

affect LW radiation, such as aerosols, trace gasses, or even the vertical resolution of 410 

the model. To test how much of the initial difference is due to differences in the 411 

temperature and humidity profiles present even in the first day, we ran RRTMG 412 

using temperature and humidity profiles averaged poleward of 70°N for each model 413 

and compared clear sky LW↓ calculated by RRTMG to that computed by model itself 414 

as reported in the model output (Figure 4). The RRTMG calculations set clouds to 415 

zero, and ozone and other gases were the same for each model, and the vertical 416 

grids of each model were first interpolated to the ECMWF-Y grid. For reference, we 417 

also include the result of RRTMG calculations using the temperature and water 418 

vapor fields from ECMWF-Y analysis in Figure 4. At forecast hour 3, these RRTMG 419 

calculations had a clear sky LW↓ spread of 4 W m-2, less than half of the 11 W m-2 420 

spread in the model-calculated LW↓. This suggests that the initial spread in clear sky 421 

LW↓ is mostly not due to differences in temperature and moisture profiles and that 422 

the inter-model spread of modeled LW↓ in the first day is not being driven by initial 423 

temperature and moisture differences. From this evidence as well as the fact that 424 

inter-model spread in LW↓ from early in the hindcasts is correlated with inter-425 

model spread in surface temperatures, we suggest differences in the way a climate 426 

model determines clear-sky LW↓ (resulting from differences in either the other 427 

radiation code input such as trace gasses, the vertical resolution of the radiation 428 

code, or the radiation code itself) are an important contributor to inter-model 429 

spread in surface temperatures in the hindcasts. This motivates further research 430 

into the way models treat longwave radiation in the Arctic perhaps through 431 

structured radiation code intercomparisons (Oreopoulos et al. 2012). 432 

In passing, we note that most of the inter-model spread of 4 W m-2 in clear 433 

sky LW↓ calculated with RRTMG at hour 3 results from the MIROC5 model. 434 

Specifically, the MIROC5 has at ~165 W m-2, whereas the values in other 5 models 435 
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are in the range of 160 to 163 W m-2.  This points to significantly larger drifts in 436 

MIROC5 at hour 3 in the temperature and moisture profiles than in the other 437 

models, which might indicate problems with model initialization in MIROC5. 438 

5.1.2.2. Comparison with Cloud Properties 439 

Figure 3 also shows that there is a statistically significant relationship 440 

between CRELW and surface temperature, which motivates an analysis of which 441 

cloud properties contribute to the inter-model spread of near surface temperature.  442 

In Figure 5, we analyze the spread in total cloud cover, LWP, IWP, frequency of 443 

clouds with LWPs greater than 20 g m-2, frequency of clouds with IWPs greater than 444 

25 g m-2, and the frequency of clouds with LWPs greater than 20 g m-2 or IWPs 445 

greater than 25 g m-2 in relation to the models surface temperature. All data are 446 

averaged over sea-ice regions during polar night. The linear relationships between 447 

surface temperature and total cloud cover or IWP are not statistically significant at 448 

the 0.05 level. CAM5 has relatively high values of total cloud cover, but low values of 449 

surface temperature; while MIROC5 is near the median amount of total cloud cover, 450 

but has high surface temperatures. The IPSL-CM5A-LR, HadGEM2-A, and MIROC5 451 

models have relatively high values of IWPs, but the range in surface temperatures 452 

among the models is close to 10 K.    453 

The linear trend in the averaged LWP and the surface temperature is 454 

statistically significant with an r value of 0.579 and a p value less than 0.05. Larger 455 

LWPs occur in the models with higher surface temperatures. One exception is CAM4, 456 

which has higher mean LWPs compared to the other models, but lower surface 457 

temperatures. There are two models (CAM5 and HadGEM2-A) that have averaged 458 

LWPs close to zero in the polar night. Arctic observations show liquid in clouds 459 

occur throughout the polar night over sea ice (Shupe et al. 2011). The models’ LWPs 460 

are not correlated with the models’ IWPs. For example, IPSL-CM5A-LR and 461 

HadGEM2-A have high IWP values, but low LWP values during this period of 462 

analysis. In addition, CAM4 has higher values of LWP compared to other models, and 463 

a median value of IWP. 464 

For CAM4, we note that there is a disconnect between mean LWPs, LW↓, and 465 

CRELW between downwelling longwave radiation.  For example, CAM4 CRELW values 466 
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are the second lowest compared to the other models, but the LWP values are the 467 

highest.  One possible explanation is that the polar night averages are masking high 468 

frequency variability. If very large LWPs occur at only a few time steps, the mean 469 

LWP would be relatively high, but the CRELW would be low. The temporal 470 

distribution of LWPs is more related to mean CRELW than the mean LWP, and 471 

motivates examination of the measures related to the frequency of opaque clouds  472 

The regression between surface temperature and the frequency of clouds 473 

with LWPs greater than 20 g m-2 is statistically significant, and the r value of 0.776 is 474 

close to the r value between surface temperature and CRELW (r = 0.821). This 475 

suggests that the surface radiative effect over sea-ice of clouds in these hindcast 476 

simulations is largely controlled the frequency that a liquid cloud occurs during the 477 

polar night. In these model runs, the frequency that a cloud occurs with LWPs 478 

greater than 20 g m-2 relates to the surface temperature to a greater extent than to 479 

the mean cloud LWP during the polar night. CAM4 is still an outlier in the analysis 480 

with a relatively high frequency of clouds with LWPs greater than 20 g m-2 but low 481 

surface temperatures. CAM5, HadGEM2-A, and IPSL-CM5A-LR have a frequency of 482 

clouds with LWPs greater than 20 g m-2 that is less than 20%. The CNRM-CM5 model 483 

has a frequency near 40 to 50% and surface temperatures near the ECMWF-Y 484 

analysis. The MIROC5 model has frequencies slightly above 50%, which relates to a 485 

high mean surface temperature compared the other models and ECMWF-Y analysis. 486 

The regression between surface temperature and the frequency of clouds 487 

with IWPs greater than 25 g m-2 is not statistically significant, and as with the mean 488 

IWP comparison, the models with a high frequency of clouds with IWP greater than 489 

25 g m-2 are not the same models with a high frequency of clouds with LWPs greater 490 

than 20 g m-2. A lack of relationship of CRELW with the frequency of IWP greater than 491 

25 g m-2 may reflect the fact high-altitude ice clouds may less efficiently change the 492 

surface LW↓ than liquid or mixed-phase clouds which tend to be closer to the 493 

surface. The lack of a relationship with IWP means that the reason that the 494 

frequency of clouds with LWPs greater than 20 g m-2 or IWPs greater than 25 g m-2 495 

significantly relates to surface temperature (Figure 5f) is due to the relationship 496 

with the frequency of LWPs greater than 20 g m-2.   497 
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5.2. Hindcast Biases at Barrow 498 

5.2.1. Biases in LTS, Potential Temperature at 850hPa, and Near Surface 499 

Temperature 500 

A benefit of hindcast climate model simulations is that these runs can be 501 

compared to in-situ observations at specific times. This has been done in previous 502 

Arctic research (Xie et al. 2008; Kay et al. 2011; Liu et al. 2011; Barton et al. 2012), 503 

in which biases have been observed and possible solutions to the problems put 504 

forth. In addition, we did not examine LW↓ and cloud LWPs in the ECMWF-Y 505 

analysis because these variables are parameterized, and in-situ data allows for a 506 

comparison of these variables that are not a result of physical model 507 

parameterizations.  508 

Variables for each model are examined at the grid point closest to the North 509 

Slope of Alaska (NSA) site at Barrow and compared to the Climate Model Best 510 

Estimate (CMBE) data. Compared to the analysis conducted poleward of 70°N with 511 

the ECMWF-Y analysis, the biases for the climate models are not as large, but 512 

comparable to the polar night land biases for 5 of the 6 models with all models 513 

having the same sign except HadGEM2-A (Figure 6). Similar biases are not 514 

necessarily expected at the NSA because the analysis is at local region compared to 515 

averages poleward of 70°N, the CMBE-NSA data are located over land, and 516 

differences in model horizontal resolution.  517 

The analysis at the NSA shows the similar linear relationship between LTS 518 

and surface temperature in the polar night (Figure 6). The linear regression of the 519 

models’ hindcast value for each day between LTS and near surface temperature is -520 

0.979.  Similar to the analysis poleward of 70°N, the MIROC5 model has higher 521 

surface temperatures and a less stable lower troposphere compared to CMBE-NSA 522 

data. CAM4, CAM5, and IPSL-CM5A-LR have LTS values slightly larger than the mean 523 

LTS value from the CMBE-NSA data similar to the analysis poleward of 70°N, but 524 

many of these models’ hindcast days lie in the 95% confidence interval of the CMBE-525 

NSA data. The HadGEM2-A model has the opposite sign in the CMBE-NSA results 526 

compared to the analysis performed poleward of 70°N (i.e., Figure 2). The linear 527 

relationship between LTS and surface temperature leads to the conclusion that an 528 
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analysis of the relationship between the surface temperature biases and other 529 

variables at NSA would be relevant to the analysis for the land and sea ice covered 530 

Arctic. 531 

5.2.2. Model Spread in Near Surface Temperatures 532 

5.2.2.1. Comparison with LW Radiation 533 

At the NSA, there are observed values of LW↓. Clear sky LW↓ and CRELW are 534 

calculated with RRTMG, as explained in Section 4.3. The linear relationships 535 

between LW↓, clear sky LW↓, and CRELW with surface temperature is examined at 536 

the NSA (Figure 7). Similar to the analysis poleward of 70°N over sea-ice, the surface 537 

temperature in the models is very much related to the downwelling surface 538 

radiation at the NSA during the polar night. The slope of this line is 3.8 W m-2 K-1, 539 

which is again very close to theoretical value at the models’ temperature range. This 540 

suggests that when the sun is below the horizon in the Arctic, surface temperature 541 

drifts toward (longwave) radiative equilibrium in the hindcast runs. The linear 542 

relationships between clear sky LW↓ and CRELW with surface temperature are 543 

statistically significant with r values of 0.882 and 0.701 representatively.  Clear sky 544 

LW↓ and CRELW are related in these models, similar to the analysis performed 545 

poleward of 70°N, with the IPSL-CM5A-LR model being an exception.   546 

5.2.2.2. Comparison with Cloud Properties 547 

We further analyze which cloud properties relate to the spread in surface 548 

temperatures in the hindcast models (Figure 8). Similar to the analysis poleward of 549 

70°N, total cloud cover and mean IWPs do not significantly relate to surface 550 

temperature at the NSA. CAM5 has the highest cloud cover amount, but the surface 551 

temperatures are relatively low. MIROC5 and IPSL-CM5A-LR have similar cloud 552 

cover amounts, but surface temperatures differ near 8 K.  553 

Unlike the analysis poleward of 70°N, the linear relationship between near 554 

surface temperature and mean LWP during the polar night is not statistically 555 

significant (Figure 7, r = 0.085, p = 0.654).  Again, CAM4 is an outlier in the analysis 556 

with relatively large LWPs but relatively low surface temperatures compared to the 557 

other models. MIROC5 has the next largest values of cloud LWP (compared to 558 

CAM4), and MIROC5 has the largest values of surface temperatures. CAM5 and IPSL-559 
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CM5A-LR both have mean LWP values lower than the CMBE-NSA data and lower 560 

surface temperatures. Many CNRM-CM5 values of LWP and surface temperature lie 561 

in the uncertainty range of the CMBE-NSA data.  The HadGEM2-A model has 562 

relatively low values of LWP, but relatively large surface temperatures. In addition, 563 

the HadGEM2-A model has relatively high values of IWP compared to the other 564 

models, which may be aiding in the relatively high temperature values.  565 

When examining the frequency of clouds with a LWP threshold of 20 g m-2, 566 

the relationship with surface temperature is more linear compared to the mean 567 

LWP values, but the results are not as statically significant as the values obtained 568 

from the analysis poleward of 70°N (NSA, r = 0.359, p = 0.052; poleward of 70°N, r = 569 

0.776, p = 0.000).  The CMBE-NSA observations have a frequency of LWP clouds in 570 

excess of the threshold of 30-40%, and the CNRM-CM5 model has a very similar 571 

frequency and a similar surface temperature.  MIROC5 has a frequency of opaque 572 

clouds greater than the CMBE-NSA data and surface temperatures greater than the 573 

CMBE-NSA data. CAM5 and HadGEM2-A have a frequency of LWP greater than 20 g 574 

m-2 less than 15%, but CAM5 has surface temperatures lower the CMBE-NSA 575 

observations whereas HadGEM2-A has surface temperatures greater than the 576 

observations.  577 

When examining the frequency of clouds with IWPs greater than 25 g m-2, 578 

there is not a statistically significant relationship between this frequency and 579 

surface temperature, but some insights about the models are discovered.  For 580 

example, the HadGEM2-A model has a relatively high frequency of IWPs greater 581 

than 25 g m-2, which may help explain why the surface temperature is relatively 582 

high even though the LWP threshold frequency is low. In fact, when examining the 583 

frequency of clouds with LWPs greater than 20 g m-2 or IWPs greater than 25 g m-2, 584 

the linear regression line has a higher r-value (r = 0.435) than either the LWP or 585 

IWP threshold regressions.  586 

Because of the contemporaneous nature of LWP and surface temperature 587 

data from the observations and models at NSA, one can stratify temperature biases 588 

according to the signs of the LWP bias in order to obtain a better sense of 589 

contribution of LWP biases to surface temperature biases at the NSA. Figure 9 590 
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examines the surface temperature bias during 4 distinct periods of Artic liquid cloud 591 

production compared to observations: (1) periods in which the models produce 592 

clouds with LWPs greater than 20 g m-2 and the observations have clouds with 593 

LWPs less than 20 g m-2, (2) periods in which the models and observations both 594 

have LWPs greater than 20 g m-2, (3) periods in which the models and observations 595 

both have LWPs less than 20 g m-2, and (4) periods in which the models have LWPs 596 

less than 20 g m-2 and the observations have LWPs greater than 20 g m-2 (Figure 9).  597 

Considering the results in Figure 8, analyzing the IWPs would have been beneficial, 598 

but IWP data at the NSA do not exist for this time period. Only day two hindcast 599 

results are shown in Figure 9 for clarity. 600 

MIROC5 has a mean surface temperature that is higher than the CMBE-NSA 601 

observations (e.g., Figure 6), and these higher values occur during periods in which 602 

MIROC5 has LWPs greater than 20 g m-2 and the observations have LWPs less than 603 

20 g m-2. In addition, higher surface temperatures compared to CMBE-NSA data 604 

occur when both MIROC5 and CMBE-NSA data have LWPs less than 20 g m-2. To 605 

analyze the relative contribution of each of these errors to the time-mean bias in 606 

surface temperature, we compute a weighted bias by multiplying the percentage of 607 

time that model occurs in the regime by the temperature bias in that regime. For 608 

MIROC5, the weighted bias during the period in which the model has LWPs greater 609 

than 20 g m-2 and the observations have LWPs less than 20 g m-2 is greater than the 610 

regime when both the MIROC5 and the CMBE-NSA data have LWPs less than 20 g m-611 
2.  612 

The surface temperatures in CAM4, CAM5 and IPSL-CM5A-LR are all lower 613 

than the CMBE-NSA observations (Figure 6).  The largest absolute values of the 614 

weighted bias for the models occur when the observations have LWPs greater than 615 

20 g m-2 and the models have LWPs less than the threshold, and surface 616 

temperature biases are statistically different than zero for all of these models in this 617 

period (Figure 9). The IPSL-CM5A-LR model also has a statistically significant 618 

difference when the model and CMBE-NSA observations both have LWPs greater 619 

than 20 g m-2, but the weighted difference is not as large. These results for CAM4, 620 

CAM5, IPSL-CM5A-LR, CNRM-CM5, and MIROC5 show that the surface temperature 621 
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biases largely relate to when the models fail to produce the liquid cloud state when 622 

it was observed.  623 

The HadGEM2-A model is an exception at NSA.  When compared to the 624 

CMBE-NSA data, the HadGEM2-A model has a positive surface temperature bias. The 625 

largest weighted bias in HadGEM2-A occurs during periods in which both 626 

HadGEM2-A and the observations have LWPs less than 20 g m-2.  As shown in the 627 

IWP and IWP frequency scatter plots, the HadGEM2-A has relatively larger values 628 

and more frequent periods of large IWPs. During the period in which the HadGEM2-629 

A and CMBE-NSA observations had LWPs less than 20 g m-2, HadGEM2-A IWPs were 630 

43.4 g m-2 , while every other model had IWPs less than 23 g m-2. Still considering 631 

how the warm bias in surface at NSA is not representative of the biases over larger 632 

areas in HadGEM2-A (Figure 2), it is not clear how much emphasis should be placed 633 

on the results for this model at NSA. 634 

5.3. Free-Running Model (AMIP) Biases in Arctic LTS  635 

5.3.1. Biases in LTS, Potential Temperature at 850hPa, and Near Surface 636 

Temperature 637 

How do these hindcast biases relate to biases of the same model run in AMIP 638 

mode? Xie et al. (2012), Williams et al. (2013), and Ma et al. (2014) determined that 639 

many fast physics AMIP modeling errors occur in hindcast simulations, but Arctic 640 

LTS was not specifically examined.  641 

For the AMIP analysis, biases in each month are examined because data for 642 

all months are available, and there are some similarities and differences between 643 

the biases in AMIP (Figure 10) and hindcast (Figure 1) mode. Similar to the hindcast 644 

runs, AMIP runs of CAM4, CAM5, and HadGEM2-A have larger LTS values compared 645 

to the ERA-I reanalysis during the winter months. The winter month LTS biases in 646 

CAM4, CAM5, and HadGEM2-A are largely due to the surface temperature being 647 

lower than ERA-I. As with the hindcast modeling runs, difficulties in representing 648 

Arctic LTS during the winter is related to difficulties in representing the surface 649 

temperature. CNRM-CM5 has similar LTS and surface temperature compared to the 650 

ERA-I reanalysis during the winter months, which is similar to the hindcast 651 

modeling results. 652 
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 However, there are differences between the AMIP results and hindcast 653 

results including an enhanced LTS error during the summer months in CAM4, CAM5, 654 

HadGEM2-A, and CNRM-CM5 in the AMIP simulations; and the IPSL-CM5-LR and 655 

MIROC5 AMIP simulations having similar LTS and surface temperature values 656 

compared to ERA-I, whereas large biases occurred in the hindcast runs. In CAM4, 657 

CAM5, and HadGEM2-A, the summer LTS bias is a combination of the biases at 850 658 

hPa and the surface.  In these models, the surface is slightly colder than the ERA-I 659 

reanalysis and the temperature at 850 hPa is slightly larger. In the CNRM-CM5 660 

model, the summer LTS bias is largely due to the potential temperature at 850 hPa.  661 

In 4 of the 6 models (CAM4, CAM5, HadGEM2-A, and CNRM-CM5), the 662 

winter/polar night LTS bias was similar in the AMIP runs compared to the hindcast 663 

runs. MIROC5 and IPSL-CM5A-LR have dissimilar biases between AMIP and hindcast 664 

during the winter period. The main conclusion of Xie et al. (2012), which states fast 665 

physics (e.g., clouds, radiation) hindcast errors is well related to those errors 666 

manifest in AMIP simulations, seems only partially confirmed when examining the 667 

LTS errors in the Arctic region, but a larger sample size of different GCMs would be 668 

beneficial. 669 

5.3.1.1. Comparison with LW Radiation 670 

To further compare the AMIP runs to the hindcast runs, we focus on polar 671 

night biases defined by daily data, and only examine output over sea ice. Surface 672 

temperature biases are compared to LW↓, clear sky LW↓, and CRELW (Figure 11).  673 

The regression between surface temperature and LW↓ is 0.573 during the polar 674 

night, and the slope is 2.32 W m-2 K-1, which indicates that more processes than LW 675 

radiative equilibrium are controlling the surface temperature. The clear sky LW↓ 676 

and CRELW do not significantly relate to surface temperature. Interestingly, the 677 

CRELW r value is more statistically significant than the clear sky LW↓ relationship, 678 

which is dissimilar to the hindcast simulations. Although the signs of the regressions 679 

between AMIP surface temperatures and cloud properties during the polar night 680 

period match those of the hindcasts, they are not statistically significant (not 681 

shown).  682 
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The differences between the AMIP and hindcast relationships are not 683 

surprising because of the multiple feedbacks that occur in AMIP simulations. For 684 

example, Song and Mapes (2012) suggested that day 30 and greater hindcast Arctic 685 

errors in the Climate Forecasting Model are related to errors in the thermal wind, 686 

which relates to the advection of heat and moisture into the Arctic.  687 

6. Conclusions 688 

This study examined Global Climate Models (GCMs) run in hindcast and free 689 

running mode to analyze errors in the Artic lower tropospheric stability. Because 690 

Arctic lower tropospheric stability may be related Arctic climate change (Bintanja et 691 

al. 2011; Bintanja et al. 2012; Boe et al. 2009), it is important to have a better 692 

understanding of lower tropospheric stability errors and hypothesize why these 693 

errors exist. The results related to the questions posed in the introduction are 694 

summarized below. 695 

- Do GCMs have biases in Arctic LTS during all months/seasons? We found that 696 

the Arctic lower tropospheric stability bias predominantly occurs during the 697 

polar night over sea ice regions in the hindcast simulations. AMIP 698 

simulations do not show as clear of a seasonality in lower tropospheric 699 

stability biases as the hindcast simulations, but similar biases occur during 700 

the winter months.  701 

- What atmospheric level or levels may be causing an Arctic bias in LTS? The 702 

polar night Arctic lower tropospheric stability bias is related to biases in 703 

Arctic surface temperature. This is displayed in the hindcast and AMIP 704 

modeling runs. AMIP summer biases relate to biases at the surface as well as 705 

temperature biases above the inversion layer. 706 

- What are possible causes of the Arctic LTS bias? Downwelling longwave 707 

radiation significantly relates to the models’ spread in surface temperature 708 

during the polar night in the hindcast simulations. Clear sky longwave 709 

radiation and the cloud radiative effect both relate to the spread in surface 710 

temperature in the hindcast models, and the production of cloud liquid water 711 

is shown to significantly relate to surface temperatures over the Arctic 712 
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region. Ice water in Arctic clouds is important in the HadGEM2-A model 713 

when analyzing hindcast simulations at the North Slope of Alaska.   714 

The contribution of longwave radiation on surface temperature, hence lower 715 

tropospheric stability, in multiple models is very evident in hindcast simulations, 716 

but other variables must be affecting the model spread in AMIP/free running 717 

simulations. In fact, Song and Mapes (2012) suggested circulation errors contribute 718 

to Arctic surface temperature errors in 30 day hindcasts of a fully coupled 719 

atmosphere-ocean-land model, which is well beyond the up to 5 day hindcasts 720 

examined here. Though beyond the scope of the T-AMIP modeling runs, it would be 721 

beneficial to determine if the same models that have Arctic temperature errors in 722 

the 5 day hindcast have similar errors at time periods in which the dynamics have a 723 

greater chance to feed back onto the system. 724 

The analysis shows strong co-variability between clear sky longwave 725 

radiation, the cloud radiative effect, largely due to differences in liquid clouds, and 726 

surface temperature during the polar night periods. Models that produced larger 727 

values clear sky LW also produced larger CRELW values and a higher frequency of 728 

clouds with LWPs greater than 20 g m-2.  There is interplay between the clear sky 729 

and clouds that affect the Arctic polar night surface temperature in these T-AMIP 730 

models. The connection between clear sky temperature, moisture, and clouds 731 

greatly affects the Arctic surface radiative budget (Francis et al. 2005; Stramler et al. 732 

2011; Morrison et al. 2012), but it is not clear if clear sky periods or cloudy periods 733 

drives the relationship.   734 

It is well-known that models have difficulties in reproducing Arctic clouds 735 

(Tjernstrom et al. 2008; Klein et al. 2009; Morrison et al. 2009), and we show that 736 

the frequency of opaqueness is an important variable when determining the clouds 737 

effect on the radiation budget in models.  As shown in the observational studies of 738 

Stramler et al. (2011) and Morrison et al. (2012), the distribution of variables that 739 

affect surface longwave radiation in models is important for the overall Arctic 740 

surface radiative budget. Pithan et al. (2013) suggested the misrepresentations of 741 

mixed-phase clouds relates to biases in Arctic LTS in the CMIP5 archive. We add that 742 

in addition to cloud biases, clear sky longwave biases are also important when 743 
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examining lower tropospheric stability errors. Improved simulation of the processes 744 

controlling downward longwave radiation in polar night will lead to an improved 745 

simulation of Arctic climate. Improved downward longwave radiation will require 746 

an attention to mixed-phase clouds, frequency of liquid that creates opaque Arctic 747 

clouds, and processes controlling clear sky longwave radiation.  748 
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TABLES: 

Table 1: Model reference for each GCM used in this study. 

Model Reference 

CAM4 Gent et al., 2011 

CAM5 Neale et al., 2010 

HadGEM2-A Martin et al., 2011 

IPSL-CM5A-LR http://icmc.ipsl.fr 

CNRM-CM5 Voldoire et al., 2013 

MIROC5 Watanabe et al., 2010 

 

Table 2: Biases, Mean Absolute Errors (MAE), and Root Mean Squared Errors 
(RMSE) for Lower Tropospheric Stability (LTS), potential temperature at 850 hPa 
(𝜃850), and near surface temperature (𝜃𝑠𝑢𝑟𝑓𝑎𝑐𝑒) between the ECMWF-Y analysis and 
CMBE-NSA data for all time periods in the analysis, polar night periods, and polar 
day periods. LTS is defined by Eq. 1, and polar night and polar day are defined in 
section 4.1. All units are in degree K. 

 Bias MAE RMSE 

 All Polar 

Night 

Polar 

Day 

All Polar 

Night 

Polar 

Day 

All Polar 

Night 

Polar 

Day 

LTS -0.36 0.40 -1.00 2.02 2.63 1.51 2.82 3.55 1.97 

𝜽𝟖𝟓𝟎 -0.11 -0.13 -0.09 0.87 1.02 0.75 1.52 1.85 1.18 

𝜽𝒔𝒖𝒓𝒇𝒂𝒄𝒆 0.11 -0.46 0.68 1.56 1.72 1.40 2.07 2.35 1.75 
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FIGURES: 

 
Figure 1: Hindcast model biases of Arctic region (top) lower tropospheric stability, 
(middle) potential temperature at 850 hPa, and (bottom) surface temperature 
averaged for periods of (left) Polar Day and (right) Polar Night. The Arctic is defined 
as poleward of 70°N. The biases are calculated from the ECMWF-Y analysis. The y-
axis displays the bias for each day since start of the hindcast, and the x-axis displays 
the bias for each model.  
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Figure 2: Hindcast model biases of Arctic region (top) lower tropospheric stability, 
(middle) potential temperature at 850 hPa, and (bottom), surface temperature 
averaged for Polar Night periods averaged over (left) sea ice, (middle) land, and 
(right) water. The biases are calculated from the ECMWF-Y analysis. The y-axis 
displays the bias for different hindcast days, and the x-axis displays the bias for each 
model. Sea ice regions are defined by concentrations greater than 15%. 
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Figure 3: Scatter plots between surface temperature and (a) downwelling longwave 
radiation at the surface (LW↓), (b) clear sky downwelling longwave radiation at the 
surface (LW↓ Clear Sky), and (c) the surface longwave cloud radiative effect (CRELW) 
for the hindcast model runs. All values are averaged poleward of 70°N over sea ice 
regions defined by 15% ice concentration. Each model is represented with a 
different symbol: (square) CAM4, (diamond) CAM5, (point-up triangle) HadGEM2-A, 
(circle) CNRM-CM5, (point-down triangle) CNRM-CM5, and (pentagon) MIROC5. 
Different shadings of each symbol represent the hindcast day, with darker shading 
representing latter forecast days. The grey bar represents the 95% confidence 
interval of surface temperatures from the ECMWF-Y analysis assuming a Gaussian 
distribution. The dash line is the best-fit linear regression between the two 
variables. The r and p-values from the linear regression is placed in the top left 
corner of each graph. 

 
Figure 4: Same as Figure 3 except for clear sky longwave down output from each 
model is on the y-axis and clear sky longwave down output from RRTMG is on the x-
axis, and hindcast hours 3 to 21 are displayed instead daily averages. The solid black 
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line is the one-to-one line.  The black dot with error bars represents the clear sky 
longwave downwelling radiation from RRTMG using the ECMWF-Y analysis. The 
error bars represent the 95% confidence interval.  

 

 
Figure 5: Same as Figure 3 except for (a) Total Cloud Cover, (b) all sky Liquid Water 
Path, (c) all sky Ice Water Path, (d) the frequency of the LWPs greater than 20 g m-2, 
(e) the frequency of IWPs greater than 25 g m-2, and (f) the frequency that LWPs 
were greater than 20 g m-2 or IWPs were greater than 25 g m-2.  
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Figure 6: Similar to Figure 3, except the scatter between (y-axis) LTS and (x-axis) 
near surface temperature at the North Slope of Alaska (NSA).  
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Figure 7: Same as Figure 3 except the analysis is performed at the North Slope of 
Alaska (NSA).   

 
Figure 8: Same as Figure 5, except the analysis is performed at the North Slope of 
Alaska (NSA). There are not Ice Water Path data at the NSA for this time period. The 
confidence interval for the NSA frequency of LWPs greater than 20 g m-2 was 
computed using bootstrapping by removing a data point and recalculating the 
frequency 1,000 times. 

 

 
Figure 9: Day two temperature biases for four periods of modeled cloud production 
compared to observations at the NSA: (a) periods in which the models produce 
clouds with LWPs greater than 20 g m-2 and the observations have clouds with 
LWPs less than 20 g m-2, (b) periods in which the models and observations have 
clouds with LWPs greater than 20 g m-2, (c) periods in which the models and 
observations have clouds with LWPs less than 20 g m-2, and (d) periods in which the 
models produced clouds with LWPs less than 20 g m-2  and the observations have 
clouds with LWPs greater than 20 g m-2. The temperature bias is on the left y-axis 
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and the percent of occurrence that each model occurs in these regimes is the x-axis. 
The colored in symbols represent biases for the regime that have p values less than 
0.05 defined by a t-tailed student t-test. The right y-axis is the weighted bias and is 
calculated by the bias multiplied by the percent of occurrence.  

 

 
Figure 10: AMIP model biases for (top) lower tropospheric stability, (middle) 
potential temperature at 850 hPa, and (bottom) surface temperature. This biases 
are calculated from the ERA-I reanalysis. The vertical axis represents the individual 
model, and the horizontal axis is the month of the bias. 

 
Figure 11: Same as Figure 3 except the analysis is performed on AMIP simulations 
from 1979 to 2008 using daily output poleward of 70°N and over sea ice regions.  
The gray shading represents the 95% confidence interval for the ERA-I reanalysis.  

 


